Copyright © 2001–2003 EMC Corporation. All rights reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." EMC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

Trademark Information

EMC®, EMC, Symmetrix, AutoIS, CLARiiON, CLARalert, DG, E-Infrastructure, HighRoad, Navisphere, PowerPath, ResourcePak, SRDF, VisualSAN, WideSky, and The EMC Effect are registered trademarks and EMC Automated Networked Storage, EMC ControlCenter, EMC Developers Program, EMC Enterprise Storage, EMC Enterprise Storage Network, EMCLink, EMC OnCourse, EMC Proven, EMC Snap, Access Logix, ATAtude, AutoAdvice, Automated Resource Manager, AVALONidm, C-Clip, CacheStorm, Celerra, Celerra Replicator, Centera, CentraStar, CLARevent, Connectrix, CopyCross, CopyPoint, CrosStor, Direct Matrix, Direct Matrix Architecture, EDM, E-Lab, Enginuity, FarPoint, FLARE, GeoSpan, InfoMover, MirrorView, OnAlert, OpenScale, PowerVolume, RepliCare, SafeLine, SAN Architect, SAN Copy, SAN Manager, SDMS, SnapSure, SnapView, SnapView/IP, StorageScope, SymmAPl, SymmEnabler, Symmetrix DMX, TimeFinder, Universal Data Tone, and where information lives are trademarks of EMC Corporation. All other trademarks used herein are the property of their respective owners.
Preface... vii

Chapter 1 Introduction
Understanding Persistent Binding in a Fabric Environment 1-2

Chapter 2 Installing and Configuring the HBA Driver
Introduction ... 2-2
 Downloading QLogic Drivers and Firmware 2-2
 Verifying and Downloading the Documentation 2-2
Installing an HBA ... 2-3
 Special Installation Sequence for Stratus ft Servers and
 EMC CLARiiON Arrays ... 2-4
 Special Instructions for CLARiiON CX200-Series
 Direct-Connect Dual-Host Clustering Configurations 2-4
EMC HBA Settings ... 2-8
 Pre-Configured Settings .. 2-8
 Configuring NVRAM for Stratus ft Servers 2-9
 Fibre-Down Servers with Embedded QLogic HBAs 2-10
 Updating Firmware/BIOS and Applying NVRAM
 Settings .. 2-10
 Manually Setting the HBA Data Rate 2-12
 Setting the Topology for QLA22xx/23xx and Windows .. 2-13
Installing the HBA Driver .. 2-14
 Driver Revision History ... 2-14
 Where to Find the Driver ... 2-14
 Windows 2003 STORPort Updates 2-14
 Installation Procedure for Windows NT Hosts 2-15
Contents

Updating the HBA Driver in a Windows 2000 or Windows 2003 Host .. 2-17
Upgrading to Windows 2003 from Windows 2000 or Windows NT 4.0 .. 2-19

Chapter 3 Configuring an EMC Boot Device

Introduction ... 3-2
How to Determine I/O Latency and Load on the Boot LUN .. 3-3
Boot Crashdump Save to Disk Behavior 3-4
Configuring a Symmetrix Boot Device 3-5
Configuring the Boot BIOS .. 3-5
Installing the Windows OS onto the Boot Device 3-7
Configuring a CLARiiON Boot Device 3-10
Procedure Flowchart ... 3-10
Requirements ... 3-12
Preparing the Storage System ... 3-13
Setting Up the HBA BIOS ... 3-14
Preparing the Fabric ... 3-15
Preparing the Server ... 3-18
Configuring the HBA Boot BIOS ... 3-20
Installing Windows ... 3-22
Verifying HBA Driver and Digital Signature Installation 3-25
Assigning a Permanent Boot Drive Letter for Windows NT ... 3-26
Installing Multipath and Failover Software 3-26
Installing Additional Navisphere Host Agent Software .. 3-27
Configuring Additional Boot Port Name Entries in the Boot BIOS ... 3-27
Starting a Fresh Installation .. 3-31
Boot Time and LUN Availability ... 3-32
Replacing a Boot HBA ... 3-33
EMC Symmetrix .. 3-33
EMC CLARiiON .. 3-33
How a Server Responds to Failure in the Boot LUN Path 3-34
Known Issues ... 3-35
Appendix A Third-Party Software
QLogic SANsurfer SANBlade Manager v2.0.21 A-2
Veritas Volume Manager 3.x for Windows 2000 A-3

Appendix B Troubleshooting
Problems and Solutions ... B-2
 Problem.. B-2
 Problem.. B-2
 Problem.. B-2
 Problem.. B-3

Index ... i-1
Contents
EMC uses the following conventions for notes, cautions, and warnings.

A note presents information that is important, but not hazard-related.

CAUTION
A caution contains information essential to avoid data loss or damage to the system or equipment. The caution may apply to hardware or software.

WARNING
A warning contains information essential to avoid a hazard that can cause severe personal injury, death, or substantial property damage if you ignore the warning.
Typosgraphical Conventions

EMC uses the following type style conventions in this guide:

<table>
<thead>
<tr>
<th>AVANT GARDE</th>
<th>Keystrokes</th>
</tr>
</thead>
</table>
| **Palatino, bold** | - Dialog box, button, icon, and menu items in text
 - Selections you can make from the user interface, including buttons, icons, options, and field names
 - New terms or unique word usage in text
 - Command line arguments when used in text
 - Book titles |
| **Palatino, italic** | - Arguments used in examples of command line syntax. |
| **Courier, italic** | - System prompts and displays and specific filenames or complete paths. For example:
 working root directory [/user/emc]:
 c:\Program Files\EMC\Symapi\db |
| **Courier, bold** | - User entry. For example:
 symmpoll -p |
| | - Options in command line syntax |

Related Documentation

- **EMC Host Connectivity Guide for Windows 2000 and Windows NT**, P/N 300-000-603
- **EMC Navisphere Manager 5.X Administrator’s Guide**, P/N 069001143
- **EMC Navisphere Manager 6.X Administrator’s Guide**, P/N 069001125
- **EMC Navisphere Application Transparent Failover (ATF) for Windows 2000 and NT Administrator’s Guide**, P/N 069001164
- **Storage-System Host Utilities for Windows 2000 and NT Administrator’s Guide**, P/N 069001141
- **PowerPath Installation And Administration Guide for Windows**, P/N 300-000-512
This document describes the procedures for installing an EMC-approved QLogic host bus adapter (HBA) into a Windows NT, Windows 2000, or Windows 2003 host environment and configuring the Windows host for connection to an EMC storage array over Fibre Channel.

Review the EMC Support Matrix for the latest information on approved HBAs and drivers.

- Understanding Persistent Binding in a Fabric Environment1-2
Introduction

Understanding Persistent Binding in a Fabric Environment

Persistent binding is the mechanism to create a continuous logical route from a storage device object in the Windows host to a volume in the EMC® storage array across the fabric.

Without a persistent binding mechanism, the host cannot maintain persistent logical routing of the communication from a storage device object across the fabric to an EMC storage array volume. If the physical configuration of the switch is changed (for example, the cable is swapped or the host is rebooted), the logical route becomes inconsistent, causing possible data corruption if the user application is modifying data through inconsistent logical routing of the communication from the driver entry point to a volume in an EMC storage array across the fabric.

The Windows NT/Windows 2000/Windows 2003 operating system (OS) does not provide a satisfactory means to allow persistent binding. Most software applications access storage using file systems that are managed by the Windows OS. (File systems are represented by drive letters: colons: C:, D:, etc.) For storage devices containing file systems, Windows NT/Windows 2000 writes a Disk Signature to the disk device. The operating system can then identify, and associate with, a particular drive letter and file system.

Since the signature resides on the disk device, changes can occur on the storage end (a cable swap, for example) that can cause a disk device to be visible to the host server in a new location. However, the OS looks for the disk signature and, providing that nothing on the disk changed, associate the signature with the correct drive letter and file system. This mechanism is strictly an operating system feature and is not influenced by the Fibre Channel device driver.

Some software applications, however, do not use the Windows file systems or drive letters for their storage requirements. Instead they access storage drives directly, using their own built-in “file systems.” Devices that are accessed in this way are referred to as raw devices and are known as physical drives in Windows terminology.

The naming convention for physical drives is simple and is always the same for software applications using them. A raw device under Windows NT/Windows 2000/Windows 2003 is accessed by the name \PHYSICALDRIVEXXX, where XXX is the drive number. For example, a system with three hard disks attached using a QLogic Fibre Channel controller assigns the disks the names
During boot-up, the Windows OS loads the driver for the storage HBAs. Once loaded, the OS performs a SCSI Inquiry command to get information about all of the attached storage devices. Each disk drive that it discovers is assigned a number in a semi-biased first come, first serve fashion based on HBA. (Semi-biased means that the Windows system always begins with the controller in the lowest-numbered PCI slot where a storage controller resides. Once the driver for the storage controller is loaded, the OS selects the adapter in the lowest-numbered PCI slot to begin the drive discovery process.)

It is this naming convention and the process by which drives are discovered that makes persistent binding (by definition) impossible for Windows NT/Windows 2000/Windows 2003. Persistent binding requires a continuous logical route from a storage device object in the Windows host to a volume in an EMC storage array across the fabric. As mentioned above, each disk drive is assigned a number in a first come, first serve basis. This is where faults can occur.

Example

Imagine this scenario—A host system contains controllers in slots 0, 1, and 2. Someone removes a cable from the QLogic controller in host PCI slot 0, then reboots the host.

During reboot, the Windows OS loads the QLogic driver during reboot and begins disk discovery. Under the scenario presented above, there are no devices discovered on controller 0, so the OS moves to the controller in slot 1 and begins naming the disks it finds, starting with `\\PHYSICALDRIVE0`. Any software applications that were accessing `\\PHYSICALDRIVE0` before the reboot will be unable to locate their data on the device, because it has changed.

The following figure shows the original configuration before the reboot. HBA0 is in PCI slot 0 of the Windows host. Each HBA has four disk devices connected to it, so Windows has assigned the name `\\PHYSICALDRIVE0` to the first disk on HBA0. Each disk after that is assigned a number in sequence as shown in the figure.
The next figure shows the same host after the cable attached to HBA0 has been removed and the host rebooted. Since Windows was not able to do a discovery on HBA0, it assigned `\PHYSICALDRIVE0` to the first device it discovered. In this case, that first device is connected to HBA1. Due to the shift, any software application accessing `\PHYSICALDRIVE0` will not find data previously written on the original `\PHYSICALDRIVE0`.

The default driver behavior does not store target bindings between host reboots. The bindings are dynamically generated by the HBA when new target devices are detected.
This chapter describes the procedures for installing an EMC-approved QLogic host bus adapter (HBA) into a Windows NT, Windows 2000, or Windows 2003 host environment and configuring the Windows host for connection to an EMC storage array over Fibre Channel.

- Introduction ... 2-2
- Installing an HBA.. 2-3
- EMC HBA Settings... 2-8
- Installing the HBA Driver... 2-14
- Updating the HBA Driver in a Windows 2000 or Windows 2003 Host ... 2-17
Introduction

The procedure described here was written specifically for the QLA22xx and QLA23xx families of Fibre Channel HBAs; however, the procedures for installing the adapter BIOS and Windows drivers are identical for QLA21xx, QLA22xx, and QLA23xx.

When installing or upgrading the BIOS and drivers, be sure to use the latest versions supported by EMC. Review the EMC Support Matrix for the latest information on approved HBAs and drivers.

Also refer to the EMC Host Connectivity Guide for Windows 2000 and Windows NT, available on Powerlink, for related information.

Downloading QLogic Drivers and Firmware

If you need to download the latest HBA driver or firmware:

2. Click Downloads at the left side of the screen.
3. Click the EMC link to the right of OEM-approved Drivers/Firmware.
4. Find the description of your HBA driver in the Name column of the table for your HBA model. Then click the Download link in the associated Download column.

Verifying and Downloading the Documentation

To check for the latest revision of this document (and download it if necessary):

2. Click Downloads at the left side of the screen.
3. Click the EMC link to the right of OEM-approved Drivers/Firmware.
4. Find the description of your HBA driver in the Name column of the table for your HBA model. Then click the Readme link in the associated Description column.
Installing an HBA

Follow the instructions included with your adapter. The adapter installs into a single slot, and has no user-configurable jumpers or switches.

Follow these steps to connect the cable to the HBA:

1. (Optical cable only) Remove the protective covers on each fiber-optic cable.

2. Plug one end of the cable into the connector on the HBA as shown in the appropriate figure. (The hardware might be rotated 90 degrees clockwise from the orientation shown.)
 - Copper Cable:

 ![Copper Cable Diagram]

 - LC Optical Cable:

 ![LC Optical Cable Diagram]

 - SC Optical Cable:

 ![SC Optical Cable Diagram]

3. Plug the other end of the cable into a connector on the storage system or a hub/switch port.
4. Label each cable to identify the HBA and the storage/slot/port to which it connects.

5. After connecting all HBAs in the server, power up the server.

Special Installation Sequence for Stratus ftServers and EMC CLARiiON Arrays

A specific installation sequence is required when installing QLogic HBAs with the Stratus ftServers and EMC CLARiiON® storage. Failure to follow this sequence may result in a **STOP: 0X0000007B** bugcheck error when booting the Stratus server for the first time when connected to EMC CLARiiON storage.

With the Stratus ftServer, if the HBA detects EMC CLARiiON array targets but no accessible LUNS, it prevents the Stratus server from booting. In this configuration, the Stratus ftServer attempts to boot from the array, instead of booting from the internal boot drive.

To avoid this issue before storage is correctly assigned, either boot the Stratus ftServer before connecting the fibre cables to the HBAs or, if connected to a fabric, disable the HBA ports on the switch before booting the ftServer.

After the system has booted, connect the cables or reenable the switch ports. Verify that the HBAs are logged in to the EMC CLARiiON array; then stop and restart the Navisphere agent on the ftServer host. This will register the HBAs with the CLARiiON array and allow the HBA to properly detect the available LUNS.

Special Instructions for CLARiiON CX200-Series Direct-Connect Dual-Host Clustering Configurations

For CLARiiON CX200-Series direct-connect dual-host cluster configurations only with QLA234x HBAs, you must follow all procedures described in this section.

Check for an Updated HBA Driver

For CLARiiON CX200-Series direct-connect dual-host cluster configurations with only QLA234x HBAs, you may need a separate driver and firmware download. The *EMC Support Matrix* notes whether separate driver and firmware files are required.

For each HBA that is determined to require updated firmware and drivers, follow the instructions under *Downloading QLogic Drivers and Firmware* on page 2-2. Be sure to reference the Name and Description...
fields to select the correct CX200-Series direct-connect dual-host cluster-compatible files.

For CLARiiON CX200-Series direct-connect dual-host cluster configurations with only QLA234x HBAs, you must change the default HBA optic jumper position:

CAUTION
Modifying the jumper setting without using the recommended firmware/drivers can cause the HBA to lose connectivity.

1. Remove the HBA from the server as instructed by your server guide.
2. Locate jumper(s) J3 (QLA2340) or J3 and J4 (QLA2342), shown in the following figure:
3. Move the jumper(s), onto pins 1–2 (if not already there).
Installing and Configuring the HBA Driver

If later you wish to return the jumper(s) to the default factory position, repeat step 2, returning the jumper to pins 2–3.

Set the HBA FC-AL Loop ID

While configuring a QLA234x HBA for Windows NT or Windows 2000 and connection to EMC CLARiiON CX200-Series for direct-connect cluster configurations, you must manually set the HBA FC-AL Loop ID. Follow these steps to enable loop hard addressing and set the loop ID on each HBA:

Perform this procedure on all nodes in the cluster connected to the CX200-Series array.

1. Boot the Windows host; press CTRL-Q when prompted to Press <CTRL-Q> for Fast!UTIL. (This prompt appears with the QLogic startup banner.)

2. After the Fast!UTIL program loads, the initial display depends on whether there are multiple QLogic HBAs installed in the server:
 - If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 - If there are multiple QLogic HBAs, a list of memory addresses occupied by those HBAs appears. Using the arrow keys, select the desired HBA and press ENTER. The Fast!UTIL Options menu appears.

3. Select Configuration Settings from the Fast!UTIL Options menu, and press ENTER.

4. Select Host Adapter Settings from the Configuration Settings menu.

5. Select Adapter Hard Loop ID from the Host Adapter Settings menu and press ENTER until the value is Enabled.

6. Select Hard Loop ID and press ENTER.

 The loop ID value entered here is the decimal representation of the FC-AL loop ID. You do not need to perform any FC-AL AL_PA hexadecimal translation.

 HBAs connected to the same SP should all have unique hard loop IDs. Select 0 for all HBAs on one node, select 1 for all HBAs on the next node, and so on.
7. Enter a value for the loop ID and press ENTER.
8. Press ESC to return to the Configuration Settings menu.
9. Press ESC to return to the Fast!UTIL Options menu.
10. When prompted to save changes made to the current adapter, select Save Changes and press ENTER.
11. If there are more adapters to configure, choose Select Host Adapter, and repeat steps 3 through 11 for each adapter.
12. Press ESC to exit Fast!UTIL.
13. Reboot the host.
14. Repeat this procedure on all nodes in the cluster connected to the CX200-Series array.
15. While you are in the BIOS, you can verify that the topology is set correctly for direct connect (FC-AL). Follow the instructions under Setting the Topology for QLA22xx/23xx and Windows on page 2-13.

CAUTION

Future use of the firmware NVRAM file to apply settings will overwrite and possibly invalidate the changes made above. If you will later update using a firmware NVRAM file, be sure it is listed and supports this CX200-Series direct-connect cluster configuration.

To restore EMC default HBA settings, either reload the approved EMC NVRAM file, or return to step 5 and ensure that Adapter Hard Loop ID is set to Disabled.
EMC HBA Settings

EMC requires configuring the QLogic BIOS settings with the EMC-approved NVRAM settings file. This file contains all of the BIOS settings for the QLogic adapters that have been tested and approved for connection to the EMC storage array.

The QLogic CD-ROM contains the latest EMC-approved BIOS and NVRAM settings files at the time of creation of the CD-ROM. If more recent files exist, you can find them on the QLogic website. Refer to Downloading QLogic Drivers and Firmware on page 2-2.

Pre-Configured Settings

The following parameters have been preconfigured in the EMC NVRAM. They are also configurable in the Host Adapter Settings, Advanced Adapter Settings, and Extended Firmware Settings menus.

These settings apply to PowerPath/ATF and non-HA connections.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>QLogic Default Setting</th>
<th>Pre-configured EMC Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>0 (1 Gb/s)</td>
<td>2 (Auto Select)</td>
</tr>
<tr>
<td>Execution Throttle</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>Connection options (topology)</td>
<td>2 (Loop preferred, otherwise point-to-point)</td>
<td>1 (point to point only)</td>
</tr>
<tr>
<td>Enable LIP Full Login</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Enable Target Reset</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Port Down Retry Count</td>
<td>8</td>
<td>45</td>
</tr>
<tr>
<td>Luns Per Target</td>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>Adapter Hard Loop ID</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hard Loop ID</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>Descending Search LoopID</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
If you have not received QLogic HBAs with the EMC configurations pre-loaded, you may have to perform the following procedure. If your HBAs have been pre-configured, proceed to *Installing the HBA Driver* on page 2-14.

During POST, Stratus ftServers present only one HBA for configuration in a multiple-HBA system. This is the way the ftServer manages HBA failover. In order to successfully configure multiple HBAs, each HBA must be part of an enabled Core PCI chassis at some point. The following procedure explains how this can be done for each chassis.

On Stratus ftServer 5200 systems, the HBA must be in a Core Chassis. Cards in an Expansion Chassis must be moved to a Core Chassis to be available for configuration.

1. To set the first HBA, follow these procedures:
 - *Updating Firmware/BIOS and Applying NVRAM Settings* on page 2-10
 - *Manually Setting the HBA Data Rate* on page 2-12
 - *Setting the Topology for QLA22xx/23xx and Windows* on page 2-13

 Ignore any steps that pertain to multiple adapters.

 Note the Core PCI Chassis that is powered up while changing the settings. After completing the changes, power down the system and prepare to configure the alternate chassis.

2. Noting the PCI Chassis that was powered up in the previous step:
 - For Stratus ftServer 3200 systems, loosen the Phillips-head screw on the top right of the chassis, effectively removing power from that chassis.
 - For Stratus ftServer 5200 systems, leave the chassis powered down.

3. Power up the system using the alternate PCI Chassis and set the second HBA by following these procedures:
 - *Updating Firmware/BIOS and Applying NVRAM Settings* on page 2-10
 - *Manually Setting the HBA Data Rate* on page 2-12
 - *Setting the Topology for QLA22xx/23xx and Windows* on page 2-13
Ignore any steps that pertain to multiple adapters.

4. Shut down the server.

5. Before powering up the server, restore power to the PCI Chassis:
 - For Stratus ftServer 3200 systems, tighten the Phillips-head screw that you loosened on the top right of the chassis.
 - For Stratus ftServer 5200 systems, power up the chassis.

6. Power up the server and proceed to Installing the HBA Driver on page 2-14.

Fibre-Down Servers with Embedded QLogic HBAs

Fibre-Down servers have a vendor-specific firmware utility and package that is posted on the QLogic website, in the EMC section. Be sure to use the firmware utility and package that matches your server model. You can check for updated firmware on the QLogic website. Follow the steps under Downloading QLogic Drivers and Firmware on page 2-2.

Updating Firmware/BIOS and Applying NVRAM Settings

You can update the HBA firmware/BIOS and NVRAM either from within a running Windows installation or by booting the server to a DOS command prompt and running the procedure described in this section.

Current 64-bit systems can be updated only from within Windows 2003 using the SANSurfer SANBlade Manager. Refer to QLogic SANSurfer SANBlade Manager v2.0.21 on page A-2 for instructions.

CAUTION

Do not flash embedded HBAs using the HBA utilities noted in this section. (Refer to Fibre-Down Servers with Embedded QLogic HBAs).

Updating While Running Windows

To update while running Windows, refer to QLogic SANSurfer SANBlade Manager v2.0.21 on page A-2.

Stratus ftServers are not supported using the qLogic SANSurfer SANBlade Manager Software or Agents, and should only be updated using the DOS boot diskette. Refer to Updating Using a DOS Boot Diskette.
Updating Using a DOS Boot Diskette

To update using a DOS boot diskette, follow these steps:

The QLogic CD-ROM contains the latest EMC-approved BIOS and NVRAM settings files at the time of creation of the CD-ROM. If more recent files exist, you can find them on the QLogic website. Refer to Downloading QLogic Drivers and Firmware on page 2-2.

1. Format a 3.5-inch diskette and extract the BIOS and NVRAM files from the archive file (.zip or self-extracting .exe) onto the diskette.
2. Reboot your Windows host system using a DOS diskette.
3. At the A:\> prompt, insert the diskette that contains the QLogic BIOS files (created in step 1).

CAUTION

Do not attempt to run this procedure from a command prompt window.

- To load firmware/BIOS and NVRAM settings, type FLASUTIL.EXE /L /F and press ENTER:
- To load NVRAM settings only, type FLASUTIL.EXE /L and press ENTER:

Some BIOS archives will have QL2XUTIL.EXE instead of FLASUTIL.EXE. Run QL2XUTIL.EXE as you would FLASUTIL.EXE.

Also, some BIOS versions might require the /N parameter (which allows an alternate NVRAM filename to be specified) to load the NVRAM file correctly.

Example: FLASUTIL /L /F /N NVRAM23o.DAT

Refer to the readme.txt file in the firmware package for complete instructions on the use of the FLASUTIL.EXE utility

4. When the procedure has finished, remove the diskette and reboot the host.
Manually Setting the HBA Data Rate

The HBA driver for a QLA2310 has a data rate setting that lets you specify 1 Gb, 2 Gb, or Auto Select mode. (The EMC default setting is Auto Select mode.)

For any device connected to the HBA, set the device data rate (if applicable) before setting the HBA data rate.

Current 64-bit systems can be updated only from within Windows 2003 using the SANSurfer SANBlade Manager. Refer to QLogic SANSurfer SANBlade Manager v2.0.21 on page A-2 for instructions.

For every HBA on which you want to manually set the HBA data rate, follow these steps.

1. Reboot the system.
2. At startup, watch for the QLogic BIOS screen and when prompted to enter Fast!Util, press CTRL-Q.
3. Select host adapter.
4. Select Configuration Settings.
5. Select Extended Firmware Settings.
6. Press the Down Arrow until you select Data Rate; then press ENTER.
7. Select the appropriate speed for the device to which the HBA connects. EMC recommends using the default setting of option 2, Auto Select.
8. Press ESC repeatedly until you reach the Save Changes prompt, and save the changes for this adapter.
9. Repeat steps 3 through 8 for each adapter.
While using a QLA22xx or QLA23xx HBA for Windows NT, Windows 2000, or Windows 2003, the default EMC configured topology is set for fabric. If you wish to change this value to FC-AL (for direct-connect), you can manually set the adapter topology.

Follow these steps to set the topology:

1. Boot the Windows host and press CTRL-Q when prompted to Press <CTRL-Q> for Fast!UTIL. (This prompt appears with the QLogic startup banner.)

2. After the Fast!UTIL program loads, the initial display will depend on whether there are multiple QLogic HBAs installed in the server:
 - If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 - If there are multiple QLogic HBAs, a list of memory addresses occupied by those HBAs appears. Using the arrow keys, select the desired HBA and press ENTER. The Fast!UTIL Options menu appears.

3. Select Configuration Settings from the Fast!UTIL Options menu and press ENTER.

4. Select Extended Firmware Settings from the Configuration Settings menu and press ENTER.

5. Select Connection Options and press ENTER.

6. Select 0 (Loop Only) or 1 (Fabric) and press ENTER.

7. Press ESC to return to the Configuration Settings menu.

8. Press ESC to return to the Fast!UTIL Options menu.

9. When prompted to save changes made to the current adapter, select Save Changes and press ENTER.

10. If there are more adapters to configure, choose Select Host Adapter and repeat steps 3 through 9 for each adapter.

11. Press ESC to exit Fast!UTIL.

12. Reboot the host.
Installing the HBA Driver

To use EMC storage array disks with a Windows host, you need an EMC-qualified Fibre Channel HBA driver. The HBA kit includes an EMC-approved driver, which must be installed and configured prior to partitioning the storage array disks. You should also check the QLogic website for the latest EMC-approved version. (Refer to Downloading QLogic Drivers and Firmware on page 2-2.)

Driver Revision History

Driver support is as follows:

- Version 8.1.5.20 — QLA22xx, QLA23xx (no CX200-Series direct-connect dual host cluster), Windows NT, Windows 2000
- Version 8.1.5.21 — QLA23xx, Windows NT, Windows 2000
- Version 8.2.1.20 — QLA23xx, Windows 2000
- Version 8.2.2.20 — QLA23xx STORPort, Windows 2003 only

Where to Find the Driver

You can find the driver:

- on the QLogic CD-ROM that accompanied the HBA. Copy the driver from the OS-specific directory: \WindowsNT4 or \Windows2000.
- on the QLogic website. Refer to Downloading QLogic Drivers and Firmware on page 2-2.

To ease installation of the driver, unzip the driver file onto a blank diskette.

Windows 2003 STORPort Updates

Currently the shipping version of Windows 2003 requires post-RTM hotfixes to resolve some known issues. For all Windows 2003 STORPort installations, you should obtain the hotfix listed in Microsoft Knowledge Base Article Q820362.

Install this patch before installing the HBA driver.
Installing the HBA Driver

Installation Procedure for Windows NT Hosts

To install the driver, follow these steps:
1. Boot the host with Windows NT 4.0.
2. Open the Control Panel and double-click the SCSI Adapter icon.
3. Select the Drivers tab.
4. Click the Add button to display the SCSI Adapter Drivers database.
5. Select HAVE DISK.
6. Locate the disk with the OEMSETUP.INF file for the QLogic driver and click OK.
7. Select QLogic QLA2300 (or QLA2200) PCI Fibre Channel Adapter and click OK to install it.
8. Reboot the host. It should recognize all new host adapter cards.
9. After rebooting, verify that the driver is installed and has started by checking the Control Panel, SCSI Adapter, Drivers window for a statement similar to the following:

The driver is now loaded and the adapter is available to the system.

Installation Procedure for Windows 2000 and Windows 2003 Hosts

To install the driver into a Windows 2000 or Windows 2003 host, follow these steps:
2. From the Windows taskbar, select Start, Programs, Administrative Tools, Computer Management
3. In the left pane of the Computer Management window, click the Device Manager icon.
4. If Windows Plug-n-Play does not detect your QLA23xx HBA model, it will be listed as Unknown or as a Fibre Channel Controller under the Other Devices icon in the right pane.
Installing and Configuring the HBA Driver

Windows 2000 configurations with Service Pack 1 or higher and Windows 2003 configurations may be able to detect QLA23xx HBAs. If this occurs, the HBA will already be listed under **SCSI Devices**; instead of proceeding with these installation steps, follow the instructions under *Updating the HBA Driver in a Windows 2000 or Windows 2003 Host* on page 2-17.

5. Double-click the first instance of SCSI Controller under **Other Devices**.

6. In the next window, click **ReInstall Driver**, then **Next**.

7. Select **Display a list of the known drivers for this device so that I can choose a specific driver**, then click **Next**.

8. Select **SCSI and RAID Controllers**, then click **Next**.

9. Click **Have Disk**.

10. Enter the path to the diskette containing the driver (for example, A:\), then click **OK**.

11. Select the appropriate QLogic HBA from the list of drivers that appears; then click **Next**.

12. Click **Next** in the next window.

13. Click **YES** to continue the installation.

14. Click **Finish** to complete the driver installation.

15. The system requests that you reboot the system. Select **NO** and click **Close**.

16. The system again requests that you reboot the system. Select **NO** again.

17. If there are other QLogic HBAs installed, repeat steps 5 through 16 until all adapters have been installed.

18. Reboot the host.
Updating the HBA Driver in a Windows 2000 or Windows 2003 Host

On Windows 2000 and Windows 2003 systems where the QLogic HBA has been detected automatically or a driver is already installed, it might be necessary to upgrade the current driver to the latest EMC-qualified driver, as described in this section.

The following procedure assumes that you have already copied the latest driver from the QLogic CD-ROM or downloaded it from the QLogic website and put it onto a diskette.

Refer to the release notes provided with the driver for information that might be unique to new driver revisions.

To install the driver into a Windows 2000 or Windows 2003 host:

1. Boot the host (if necessary) with Windows 2000 or Windows 2003.
2. From the Windows taskbar, click Start, Programs, Administrative Tools, Computer Management.
3. In the left pane of the Computer Management window, click the Device Manager icon.
4. Double-click the SCSI & RAID Controllers icon.
5. Under SCSI & RAID Controllers, double-click the adapter you wish to upgrade.
6. In the next window, click the Driver tab; then click Update Driver.
7. Follow the update wizard until you are given the choice to Display a list of the unknown drivers for this device so that I can choose a specific driver.
 Click the button next to this choice; then click Next.
8. In the Select a Driver window, click Have Disk.
9. Enter the path to the diskette containing the driver (A:\, for example), or use the browse function to locate the driver; then click OK.
10. Select the driver that is discovered and click Next.
11. In the next window, click Next.
12. If prompted, click **Yes** to continue the installation.

13. Click **Finish** to complete the installation.

14. If the system requests that you reboot the system and you have other adapters to update, select **NO**; then click **Close**.

15. If the system again requests that you reboot the system and you have other adapters to update, select **NO**; then click **Close**.

16. If you have other adapters to update, select the next adapter under **SCSI & RAID Controllers** and repeat steps 6 through 15.

 When all adapters have had their drivers updated, select **Yes** to the **reboot** prompt.
Upgrading to Windows 2003 from Windows 2000 or Windows NT 4.0

Note the following if upgrading to Windows 2003:

- Upgrading from Windows NT 4.0 — The Windows NT4 drivers will not be preserved while upgrading to Windows 2003. You should obtain the correct Windows 2003 drivers (refer to Downloading QLogic Drivers and Firmware on page 2-2) and reinstall the drivers after the upgrade is complete.

- Upgrading from Windows 2000 — The Windows 2000 drivers may be preserved while upgrading to Windows 2003. These SCSIPort drivers (including the native Windows 2003 SCSIPort drivers) are not supported by EMC for Windows 2003. You should obtain the correct Windows 2003 drivers (refer to Downloading QLogic Drivers and Firmware on page 2-2) and reinstall the drivers after the upgrade is complete.

You may wish to disconnect your storage during the Windows upgrade, and reconnect it after the approved Windows 2003 drivers have been installed.
Windows hosts have been qualified for booting from EMC storage array devices interfaced through Fibre Channel as described in the EMC Support Matrix. This chapter describes the process to configure a storage array device as a boot device.

- Introduction ..3-2
- Configuring a Symmetrix Boot Device ...3-5
- Configuring a CLARiiON Boot Device...3-10
- Boot Time and LUN Availability ...3-32
- Replacing a Boot HBA ...3-33
- How a Server Responds to Failure in the Boot LUN Path3-34
- Known Issues..3-35
Introduction

Windows hosts have been qualified for booting from EMC array devices interfaced through Fibre Channel as described under Boot Device Support in the EMC Support Matrix.

CAUTION

Microsoft Windows NT 4.0 and Windows 2000 use virtual memory paging files that reside on the boot disk. If the paging file becomes unavailable to the memory management system when it is needed, the operating system will crash with a blue screen.

For this reason, EMC recommends that you do not boot a Windows host from the storage array. However, if it is necessary to use the storage array as a boot disk, EMC recommends shutting down the host server during any maintenance procedures that could make the boot disk unavailable to the host.

Any of these events could crash a system booting from the storage array:

- Lost connection to array (pulled or damaged cable connection)
- Array service/upgrade procedures, such as on-line microcode upgrades and/or configuration changes
- Array failures, including failed lasers on Fibre Channel ports
- Array power failure
- Storage Area Network failures, such as Fibre Channel switches, switch components, or switch power failures
- Storage Area Network service/upgrade procedures, such as firmware upgrades or hardware replacements

EMC recommends moving the Windows virtual memory paging file to a local disk when booting from the storage array. Consult your Windows NT/Windows 2000 manual for instructions on how to move the paging file.
How to Determine I/O Latency and Load on the Boot LUN

The current restrictions for boot-from-array configurations (listed in the EMC Support Matrix) represent the maximum configuration that is allowed using typical configurations. There are cases where your applications, host, array, or SAN may already be utilized to a point when these maximum values may not be achieved. Under these conditions, you may wish to reduce the configuration from the maximums listed in the EMC Support Matrix, for improved performance and functionality.

Here are some general measurements that can be used to determine if your environment may not support the maximum allowed boot-from-array configurations:

- Using the Windows Performance Monitor, capture and analyze the Physical Disk and Paging File counters for your boot LUN. (For Windows NT 4.0, you might have to enable disk performance counters manually; refer to Microsoft support for the description and use of the Windows Performance Monitor.) If response time (sec/operation), or disk queue depth seem to be increasing over time, you should review any additional loading that may be affecting the boot LUN performance (HBA/SAN saturation, failovers, ISL usage, etc.).

- Use available Array Performance Management tools to determine that the array configuration, LUN configuration and access is configured optimally for each host.

Possible ways to reduce the load on the boot LUN include:

- Move application data away from the boot LUN.
- Reduce the number of LUNs bound to the same physical disks.
- Select an improved performance RAID type.
- Contact your EMC support representative for additional information.
If your system is configured to write crashdumps after system failures, and the host is configured to boot from the array, you will be able to successfully save the crashdump only on the original available boot device path on which the system started. This is a Windows limitation, and installing PowerPath will not affect this behavior. At the time a system crash is to be written to disk, Windows has already saved the original boot path, and PowerPath cannot redirect the crashdump file (MEMORY.DMP) to an alternative available device. If you have a configuration for which you want to capture a crashdump, you should ensure that the original primary boot path is available at the time of the crash.
Configuring a Symmetrix Boot Device

This section describes how to install the Windows NT or Windows 2000 operating system onto an EMC Symmetrix® storage system connected to an Intel-based x86 class server. You can then boot Windows from the storage system.

Configuring the Boot BIOS

The procedure below describes how to configure the boot BIOS. The procedure assumes that the boot BIOS has been installed to the adapters already.

1. Connect the EMC storage array boot port to the adapter in the lowest-numbered PCI slot in the server. For example, if you have three adapters in the system in slots 2, 4, and 5, connect the cable to the adapter in slot 2. Do not connect cables to the other adapters at this time.

2. Boot the server, and press CTRL-Q when you see the QLogic banner:

 Different HBA models may display different banners. Be sure to select CTRL-Q for the HBA you wish to configure.

3. After Fast!UTIL loads, the display depends on whether there are multiple QLogic HBAs installed:
 - If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 - If there are multiple QLogic HBAs, a list of addresses occupied by those HBAs appears. Since the EMC storage array is attached to the lowest-numbered PCI slot, select the first adapter from the list; then press ENTER. The Fast!UTIL Options menu appears.

4. From the FastUTIL Options menu, select Configuration Settings and press ENTER.
5. From the **Configuration Settings** menu, select **Host Adapter Settings** and press **ENTER**.

6. From the **Host Adapter Settings** menu, select **Host Adapter BIOS** and press **ENTER** to enable it if it is not already enabled.

 Refer to **EMC HBA Settings** on page 2-8 for a table of EMC-configured NVRAM settings.

7. Press **ESC** to exit the **Configuration Settings** menu.

8. From the **Configuration Settings** menu, select **Selectable Boot Settings** and press **ENTER**.

9. From the **Selectable Boot Settings** menu, select **Selectable Boot Device** and press **ENTER** to enable it if it is not already enabled.

10. Select **Current Boot Node Name** and press **ENTER**.

 The adapter scans for attached storage devices, and displays them on the screen.

11. Choose the storage array port from which you wish to boot. Its entry will be similar to the following:

ID	VENDOR	PRODUCT	REV	NODE NAME	Port ID
12	EMC	SYMMETRIX	5566	50060482BFD06C02	0000E4

 Select your boot device and press **ENTER**.

 A list of LUNs will appear in a new window. Select the LUN from which you wish to boot and press **ENTER**.

12. Press **ESC** at the **Selectable Boot Settings** menu to return to the **Configuration Settings** menu.

13. Press **ESC** at the **Configuration Settings** menu to return to the **Fast!UTIL Options** menu.

 Select **Save Changes** and press **ENTER**.

14. Press **ESC** to exit **Fast!UTIL**.

15. Reboot the host.
Configuring an EMC Boot Device

Installing the Windows OS onto the Boot Device

Follow the appropriate steps below to install the Windows operating system onto the EMC boot device.

Windows NT

Microsoft does not provide a driver for the QLogic controllers on the Windows NT installation CD-ROM. In order to properly install Windows NT on a the EMC storage array boot device connected to a QLogic controller, the Windows installation diskettes must be used with the CD-ROM.

1. Boot the server with Windows NT installation diskette 1. The server displays the following message, followed by a blank blue screen. Press F6 as soon as the blue screen appears:

 Setting is inspecting your computer's hardware configuration ---

 Pressing F6 tells the Windows installer that you want to load a third-party driver before proceeding with the installation.

2. Follow the prompts to insert the necessary diskettes until the setup stops to allow you to add additional devices.

 A screen message will tell you that the setup program cannot determine the type of one or more mass storage devices.

 From this point, press S to specify additional devices. You will need to select Other and press ENTER.

3. Insert the QLogic driver disk into the diskette drive and press ENTER.

4. You are prompted to select one of four driver choices. Select QLogic QLA2300 (or QLA2200) PCI Fibre Channel Adapter and press ENTER.

 The driver loads and you are brought back to the Additional Devices screen.

5. You must now load the driver for your CD-ROM drive. The Windows NT installer assumes that you want to specify all storage drivers now. If the CD-ROM is not selected, installation will fail later in the process.

 Press S to specify an additional device.

6. From the list, scroll up to select IDE CD-ROM (ATAPI 1.2)/PCI IDE Controller and press ENTER.
7. Some servers use SCSI CD-ROM drives. If your server has a SCSI CD-ROM, repeat steps 5 and 6 to select the driver for the SCSI controller. If your controller is not on the list, obtain the driver on diskette from the vendor.

8. If you want to specify drivers for other devices installed in your system, do so; otherwise press ENTER at the Additional Devices screen to continue with Windows installation.

9. After completing Windows installation, reinstall the QLogic driver using the steps under Installation Procedure for Windows NT Hosts on page 2-15.

Windows 2000

1. Boot the installation CD-ROM. (On some servers, it might be necessary to use the Windows 2000 installation diskettes to start the installation procedure.)

 When the installer starts, a message appears at the bottom of the screen, prompting you to press F6 to load any other third-party drivers.

 Press F6.

2. After a few moments, the installer stops to let you add additional devices. A screen message will tell you that the setup program cannot determine the type of one or more mass storage devices.

 From this point, press $ to specify additional devices.

3. Insert the QLogic driver diskette into the drive and press ENTER.

4. Select the model adapter that you have installed from the list that appears. Be sure to choose the correct model series for the HBA you have installed (QLA2300, for example) and press ENTER.

 The driver loads and you are brought back to the Additional Devices screen.

5. If you want to specify drivers for other devices installed in your system, do so; otherwise press ENTER at the Additional Devices screen to continue with Windows installation.

1. Note these prerequisites:
 - RDP server with release 1.30
 - BfS Installation script, see HP ProLiant BL20p G2 documentation for creation and installation of this script.

2. Configure BL20p G2. Then reboot the BL20p G2 and select F9 to RBSU (F10 to save all changes before exit).
 a. Select Set Boot Controller Order
 i. Ctrl:1 PCI Dual Port Fibre..Port 1
 ii. Ctrl:2 PCI Dual Port Fibre..Port 2
 iii. Ctrl:3 HP Smart Array 5i Ctrl
 b. Set IPL order as follows:
 i. PCI Embedded HP NC7781 Gig Server Adapter Port 1
 ii. CD-ROM
 iii. Floppy Drive
 iv. Hard Drive C:

3. Install the Windows 2000 OS:
 a. If there is a local hard drive installed, remove it. This drive can be reinserted after the installation is completed.
 b. Open an interface window using the RDP console by Right-clicking the target server and selecting Power Control/RILOE Interface.
 c. Delete the target server (BfS Server) from the RDP database if it exists.
 d. Reboot the BfS server. (At boot time, the newly created LUN should be detected.)
 The BfS server should now be seen in the RDP New Computer pane.
 e. Start the BfS deployment by dragging and dropping the BOOT FROM SAN BL20p script task to the BfS server new computer
 Installation time is approximately 50 minutes.
Configuring a CLARiiON Boot Device

This section describes how to install a boot device onto an EMC CLARiiON® storage system connected to an Intel-based x86 class server. You can then boot Windows from the storage system.

This section assumes that EMC did not prepare the server or the storage system to boot Windows from the storage system.

SCSI hard disks are allowed in configurations that boot over Fibre Channel. However, the BIOS for a SCSI disk’s SCSI adapters must be disabled. You should also disconnect any SCSI disks before installing Windows.

Procedure Flowchart

The installation procedure includes steps you must follow in a specific order. The following flowchart outlines the major steps.
Configuring a CLARiiON Boot Device

Requirements

Satisfied

Prepare Storage System

Boot LUN and Storage Group exist

Create HBA Driver Diskettes

Gather Data and Set Up HBA BIOS

By WWPN
Soft Zoning

By Port Number
Hard Zoning

Prepare Switch Fabric

Prepare Server

Configure HBA Boot BIOS

Install Windows

Verify Driver Installation

Install Additional Software

Multiple HBA
PowerPath/ATF

Single HBA
PowerPath/CDE

Failover Software

Navisphere Agent

Complete Requirements

Need boot LUN and Storage Group

Create boot LUN and Storage Group

Need to update firmware and NVRAM

Update firmware

Need to update NVRAM only

Update NVRAM

Start

Unsatisfied
This section lists supported configurations, hardware and software requirements, and related documentation.

Refer to the **EMC Support Matrix**.

Topologies, Configurations, and Revisions

Refer to the **EMC Support Matrix** for specific support information.

Some general requirements are:

- Boot server with a CD-ROM and diskette drives, and support for the Windows version you will install. Refer to the **EMC Support Matrix** for supported servers.

- Latest HBA firmware and drivers for your operating system. Refer to **Downloading QLogic Drivers and Firmware** on page 2-2.

- One or more PCI Fibre Channel host bus adapters, installed in the lowest numbered PCI slot(s), which are the slots first scanned at startup, in the boot server.

- If installing in a fabric environment, Fibre Channel switch configured for IP, and with an available zone configuration utility (Telnet-based or Web-based).

- If required by the **EMC Support Matrix**, CLARiiON storage system with Access Logix™ and Access Control enabled (using EMC ControlCenter Navisphere Management software).

 Until Windows is fully installed, you must connect only the storage system onto which the operating system will be loaded. Later, you can connect other storage systems.

- Cable connections as appropriate for server between server Fibre Channel HBA, switch (FC-SW only), and storage system SPs.

- Navisphere Management station with EMC ControlCenter Navisphere Management software or CLI. The station must be separate from the boot server but networked to the storage system (FC4700 and later array models) or connected to the storage system (models earlier than FC4700).

- The host system for Windows NT 4 must have less than 4.0 GB of physical RAM. (MSKB Q160392).

- HP ProLiant BL20p G2 requires RDP server with release 1.30 and a BfS installation script. Refer to HP ProLiant BL20p G2 documentation for creation and installation of this script.
Media Requirements

Required media includes the following:

Refer to *Downloading QLogic Drivers and Firmware* on page 2-2.

- Latest EMC-approved Fibre Channel PCI HBA Driver Kit for Windows
- Latest EMC-approved Fibre Channel PCI HBA firmware
- MS-DOS boot diskette.

Preparing the Storage System

Boot device support requires a Navisphere Management station with Navisphere Manager or CLI. The station must be separate from the boot server but networked to the storage system (FC4700 and later model arrays) or connected to the storage system (models earlier than FC4700).

Before you can install Windows onto a storage system, the storage system must have at least one bound LUN in a Storage Group for the boot server. The LUN must be owned by the SP connected to the boot HBA.

For Windows NT 4.0, the host system boot LUN must be assigned Host LUN ID 0 by the EMC storage array. (MSKB Q218974)

During this installation procedure, you should have only one LUN in the boot Storage Group, so that you can easily identify the boot LUN. Later, you can add other LUNs to this Storage Group.

If you need to create a LUN, refer to the EMC ControlCenter Navisphere Management software documentation for your array type.
Once the HBA is installed in the host and the EMC array is connected to the fabric (FC-SW) or directly connected to the HBA (FC-AL), you can configure an EMC-qualified QLogic HBA for boot support using Fast!UTIL, as described below:

1. Boot the server, and press CTRL-Q when you see the QLogic banner:

 Different HBA models may display different banners. Be sure to select CTRL-Q for the HBA you wish to configure.

 2. After Fast!UTIL loads, the display depends on whether there are multiple QLogic HBAs installed:

 - If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 - If there are multiple QLogic HBAs, a list of addresses occupied by those HBAs appears. Use the arrow keys to select the desired HBA; then press ENTER. The Fast!UTIL Options menu appears.

2. Select Configuration Settings from the menu.

3. Select Host Adapter Settings and enable Host Adapter BIOS.

 Refer to EMC HBA Settings on page 2-8 for a table of EMC-configured NVRAM settings.

4. Press ESC to return to the previous menu.

5. Select Selectable Boot Settings and enable Selectable Boot Device.

6. For any entry that is not blank (all zeros), highlight the entry and press C to clear any previous values.

7. When all parameters are set correctly, press ESC to return to the Fast!UTIL Options menu; then select Save Changes to save the changes you made to the current adapter.
9. Press ESC to exit the Fast!UTIL Options menu.

10. Reboot the host.

What Next?

The next step depends on the topology:

- FC-AL: Proceed to *Preparing the Server* on page 3-18.
- FC-SW: Proceed to *Preparing the Fabric* on page 3-15.

Preparing the Fabric

You can configure a switched fabric to support multiple hosts and multiple storage systems. For this setup, we will describe only the minimum configuration required for the boot LUN and server.

EMC recommends that you use switch zoning in all configurations to ensure consistency if your fabric grows.

The configuration below requires an existing knowledge of zoning and switch fabric concepts. The procedure explains the necessary steps to enable boot functionality for the storage system. This configuration does not cover the impact of zoning changes to other devices that will use the same connections. You should confirm your overall topology requirements and configuration before implementing any zoning changes.

Other devices on the fabric may introduce load and demand on the interlink components and storage system that can affect boot LUN performance and correct functionality.

The switch fabric must be configured initially so that the boot HBA is visible only to a single port on the storage system. That is, there must be only one zone containing the boot HBA and one SP port until installation is complete, even if you will install failover software later.

This can be accomplished in one of three ways (described following this list):

- Switch fabric soft zoning (by WWPN)
- Switch fabric hard zoning (by switch port)
- Physical connection of only one SP port to the fabric
Soft Zoning

These instructions let you configure the soft zoning as this setup requires. They are not a complete explanation of zoning. Refer to the documentation that is available for your switches for a complete guide.

1. Ensure that the server and storage system are cabled properly and powered on.

 For the HBA's WWPN to appear in the Name Server database, the server must be in the boot BIOS menu. If the server is not in the boot BIOS menu:
 a. Reboot the server. When the QLogic BIOS banner (shown below) appears, press CTRL-Q:

 Different HBA models may display different banners. Be sure to select CTRL-Q for the HBA you wish to configure.

 QLogic Corporation
 QLA2300 PCI Fibre Channel ROM BIOS Version 1.17
 Copyright © Qlogic Corporation 1993-1999 All rights reserved
 Press <CTRL - Q> for Fast!UTIL
 www.qlogic.com

 b. After Fast!UTIL loads, the display depends on whether there are multiple QLogic HBAs installed:
 • If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 • If there are multiple QLogic HBAs, a list of addresses occupies by those HBAs appears. Use the arrow keys to select the desired HBA; then press ENTER. The Fast!UTIL Options menu appears.
 c. Select Configuration Settings from the menu.
 d. Select Selectable Boot Settings from the Host Adapter Settings menu; then select the first Boot Port Name entry.

 The HBA will scan for available target ports. The HBA might not find any target ports, but this step allows the HBA to register with the switch database.

 e. Leave the server, and continue to step 2.

2. Start a switch web-based or Telnet-based configuration session.
3. Create a **member** alias for the boot HBA WWPN. Make sure it is a **member** alias and that you use the **21... Port Name**, not the **20... Node Name**.

4. Create a **member** alias for one storage system SP port that you connected earlier and to which you bound the boot LUN. You can choose either Port 0 or Port 1 of the SP if both ports are connected to the switch. EMC recommends using Port 0 for consistency.

5. Create a zone and include the HBA alias and SP port alias created in steps 3 and 4.

6. Create a new zone configuration or select an existing zone configuration, and add the zone created in step 5.

7. Enable the zone configuration chosen in the previous step, and click **Apply**.

8. Ensure that any ports, aliases or zones composed of the HBA connection referenced above do not appear in any other zones or configurations that are enabled.

 Important: If you have previously soft-zoned servers, they will not adhere to the new configuration unless they are restarted. Refer to the switch zoning manual for further information.

What Next?
Continue to *Preparing the Server* on page 3-18.

Hard Zoning

To use hard zoning:

1. Start a switch web-based or Telnet-based configuration session.

2. Create a zone and include the boot HBA port and one SP port. You can choose either Port 0 or Port 1 of the SP if both are connected to the switch. EMC recommends using Port 0 for consistency.

3. Create a new zone configuration or select an existing zone configuration, and add this zone.

4. Enable the zone configuration chosen in the previous step.

5. Ensure that any ports, aliases or zones composed of the HBA connection referenced above do not appear in any other zones or configurations that are enabled.

What Next?
Continue to *Preparing the Server* on page 3-18.
Configuring an EMC Boot Device

Physical Connection of Only One SP Port to the Fabric

If the SP that owns the boot LUN has only one port connected to the switch, and no other target devices are on the fabric, then zoning for the boot configuration is not necessary. You should make sure any existing zones still allow the HBA-to-SP connection.

Refer to the switch documentation for possible restrictions.

What Next?
Continue to Preparing the Server.

Preparing the Server

You must adhere to the configuration rules for your server when you install and set up the PCI cards. See the server installation and operation manual. All servers must meet the following requirements:

- The PCI Fibre Channel HBA must be the first HBA adapter scanned for boot.
- SCSI hard disks are allowed in configurations that boot from Fibre Channel. However, the BIOS for the disk’s SCSI adapters must be disabled. You should also disconnect any SCSI disks before installing Windows. Reconnect or add SCSI hard disks when the installation is complete.
- You must have at least one EMC-qualified QLogic Fibre Channel HBA. Depending on your configuration, you can install additional Fibre Channel HBAs according to the topology rules in the EMC Support Matrix.

Perform the following steps:

1. Press ESC to exit the Fast!UTIL Options menu; then reboot the system.
 You may receive a non-system disk error message; this is normal at this stage.

2. If any SCSI hard disk drives are connected, continue with step 3.

 You might not be able to install Windows on the storage system if the server has a SCSI hard disk connected. The Windows Setup program may automatically assign the SCSI disk as drive C and install the operating system on that disk.

 If no SCSI hard disk drives are connected to the server, go to step 4.
3. To disconnect all SCSI hard disk drives, unplug the power and SCSI bus cables connected to a SCSI adapter or controller. For details, see the installation and operation manual for your server.

4. To prepare your system to boot Windows over a Fibre Channel connection, you must do the following:

For detailed instructions on the HP ProLiant BL20p G2, refer to Configuring the HP ProLiant BL20p G2. For other detailed instructions, refer to the manufacturer’s documentation available for each adapter.

- For any server with IDE CD-ROM drives, you should disable BIOS on any of the server’s integrated SCSI adapter(s) because SCSI BIOS is not required to boot from CD-ROM.
- Disable or remove any IDE HDD drives.
- For servers with SCSI CD-ROM drives, enable BIOS on the SCSI channel that includes the CD-ROM; disable BIOS on any other integrated SCSI channels. Remove any SCSI hard disks on the same bus as the CD-ROM drive.

If the CD-ROM is on a SCSI controller and the BIOS is disabled for that controller, then you will not be able to boot from the CD-ROM. To boot from CD-ROM in the future, you will need to re-enable the BIOS for the CD-ROM controller.

- Disable BIOS on any other HBA BIOS in your system other than the QLogic HBA(s) designated for booting. See the documentation that accompanied the HBA for instructions.

Reboot the BL20p G2 and select F9 to RBSU (F10 to save all changes before exit):

1. Select Set Boot Controller Order:
 a. Ctrl:1 PCI Dual Port Fibre..Port 1
 b. Ctrl:2 PCI Dual Port Fibre..Port 2
 c. Ctrl:3 HP Smart Array 5i Ctrl

2. Set the IPL order as follows:
 a. PCI Embedded HP NC7781 Gig Server Adapter Port 1
 b. CD-ROM
 c. Floppy Drive
 d. Hard Drive C:
What Next?

Configure the HBA Boot BIOS as described in the next section.

Configuring the HBA Boot BIOS

Follow these steps to configure the storage system LUN for the HBA Boot BIOS:

1. Reboot the server.

 When the QLogic BIOS banner (shown below) appears, press CTRL-Q.

 Different HBA models may display different banners. Be sure to select CTRL-Q for the HBA you wish to configure.

2. After Fast!UTIL loads, the display depends on whether there are multiple QLogic HBAs installed:
 - If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 - If there are multiple QLogic HBAs, a list of addresses occupies by those HBAs appears. Use the arrow keys to select the desired HBA; then press ENTER. The Fast!UTIL Options menu appears.

3. Select Configuration Settings from the menu.

4. Select Selectable Boot Settings from the Configuration Settings menu.

 Select the first Boot Port Name entry, and in the Device window scroll to select the CLARiiON port WWN from which you want to boot.

 Depending on the array model, the HBA may not yet detect any LUNs, or it may detect a LUNZ labeled disk. This is normal behavior.

 Leave the server here so the HBA will remain active while you configure the storage array groups.

5. Using EMC ControlCenter Navisphere Management software, you must add the HBA to the storage group you created earlier. Depending on the array model, you may have to first manually
register the HBA connection. If you will later install PowerPath or ATF, be sure to select the corresponding parameters during the registration procedure. Refer to your EMC ControlCenter Navisphere Management software, ATF, or PowerPath documentation for detailed instructions.

6. Press ESC until you exit the Fast!UTIL Options menu. You do not need to save any changes if prompted.

7. Reboot the server.
 When the QLogic BIOS banner (shown in step 1) appears, press CTRL-Q.

Different HBA models may display different banners. Be sure to select CTRL-Q for the HBA you wish to configure.

8. After Fast!UTIL loads, the display depends on whether there are multiple QLogic HBAs installed:
 • If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 • If there are multiple QLogic HBAs, a list of addresses occupied by those HBAs appears. Use the arrow keys to select the desired HBA; then press ENTER. The Fast!UTIL Options menu appears.

9. Select Configuration Settings from the menu.

10. Select Selectable Boot Settings from the Configuration Settings menu.
 Select the first Boot Port Name entry, and in the Device window select the CLARiiON port WWN from which you want to boot.
 After you select the WWN, if there is more than one LUN detected, select the boot LUN number from the next window.

11. When all parameters are set correctly, press ESC to return to the Fast!UTIL Options menu; then select Save Changes to save the changes you made to the current adapter.

12. Press ESC to exit the Fast!UTIL Options menu.

13. Reboot the server.

What Next?
 Install Windows as described in the next section.
You are ready to install the Windows operating system files.

For HP ProLiant BL20p G2 servers, follow the steps under *HP ProLiant BL20p G2 Windows 2000 OS Installation* on page 3-24.

You need the following materials to install Windows:
- Windows CD-ROM for the Windows version you wish to install.
- EMC-approved QLogic HBA driver diskette for Windows

If you bound a new LUN to serve as your boot disk, ensure that the bind procedure is complete (EMC ControlCenter Navisphere Management software, LUN Properties tab *Percent Bound*).

1. Insert a bootable Windows CD-ROM in the drive and reboot the system.

 If your system has a bootable disk already configured from a previous installation, the software will prompt you to press any key to boot from CD-ROM. If the bootable disk is not the storage array disk on which you want to install Windows, then you should disable that disk’s SCSI BIOS as described under *Preparing the Server* on page 3-18.

2. Immediately after the Windows installation begins, press F6 when directed or when the blue screen appears following this banner:

 Setup is inspecting your computer's hardware configuration ---

 Pressing F6 tells the Windows installer that you want to load a third-party driver before proceeding with the installation.

 If you do not press F6 in time to add the drivers, restart the server to try again.

3. When prompted for additional drivers, select S.

4. Insert the EMC HBA Drivers diskette for your OS. Then press ENTER to continue.

5. Select the appropriate QLogic boot HBA from the next menu.

6. Press ENTER to continue.

 Setup continues to load files. The *Welcome to Setup* screen appears.
7. Press ENTER to begin the setup procedure.
 If you are installing Windows on a newly created LUN, you may receive a message that your boot disk is new or erased. You can press C to continue.

 The **Windows Licensing Agreement** appears.

8. Press PG DN to scroll through and read the license agreement; to accept it, press F8.

 The **Windows Server Setup** screen displays disk partition information (if your system already contains partitions), or lets you create a new hard disk partition.

 The Windows 2000 boot LUN can be larger than 8 GB (Refer to Microsoft Knowledge Base article Q240672.) Windows NT 4.0 is bound by a Boot BIOS 8 GB limit. (Refer to Microsoft Knowledge Base article Q224526.)

9. If you are installing an operating system for the first time, highlight **Unpartitioned Space on the ql2xxx adapter**; then:
 - press ENTER to use the entire disk as one partition, or
 - press C to create a custom partition, and then specify the partition size.

 If the new disk is displayed as **Unformatted** or **Damaged** you must delete the partition before continuing. To do this, press D, then follow the on-screen delete instructions. After you delete the partition, the space will then appear as **Unpartitioned Space** mentioned above.

 If you are reinstalling Windows, the Setup software prompts you to overwrite or upgrade:
 - To overwrite, press ESC and follow instructions.
 - To upgrade, press ENTER.
 - If you want to create a new hard disk partition, you must first delete the existing partition, and then create a new one. To do so, select the partition you want to delete, press D, and then follow the on-screen instructions to complete the deletion of the partition. Once the system deletes the partition, you can press C to create a new one.

10. The setup software prompts you to specify the file system format for the partition.
Select NTFS file system format, which is suitable for most sites unless you have other specific requirements. Then press ENTER. (For background information on the choice of the NTFS file system, refer to Microsoft Knowledge Base Article 0184006.)

Setup now formats the partition, copies the Windows system files to the partition, and starts rebooting the server.

11. When prompted, remove the diskette and CD-ROM.

If your system prompts you to press any key to boot from CD-ROM, do not press a key; allow the system to boot from the HBA adapter.

After booting, the system continues installation, displays the Windows banner, and begins autodetection of mass-storage devices and adapters.

12. Follow the on-screen instructions to complete the installation.

When the Completing the Windows Setup Wizard screen appears, click Finish.

13. If you plan to add SCSI disks in the future, you should disable the BIOS for the managing SCSI controller so that the system does not attempt to boot from those disks. For information, refer to Preparing the Server on page 3-18.

14. Install the latest EMC-approved Windows Service Pack as explained in the Microsoft documentation.

For HP ProLiant BL20p G2 servers:

1. If there is a local hard drive installed, remove it. This drive can be reinserted after the installation is completed.

2. Open an interface window using the RDP console by right-clicking the target server and selecting Power Control/RILOE Interface.

3. Delete the target server (BfS Server) from the RDP database if it exists.

4. Reboot the BfS server. (At boot time, the newly created LUN should be detected.)

The BfS server should now be seen in the RDP New Computer pane.
5. Start the BfS deployment by dragging and dropping the **BOOT FROM SAN BL20p** script task to the BfS server new computer. Installation time is approximately 50 minutes.

What Next?

Verify that the Fibre Channel HBA drivers and (Windows 2000 only) digital signatures are installed and started, as described in the next section.

Verifying HBA Driver and Digital Signature Installation

You should install the HBA driver again here to ensure that the EMC-required settings are implemented. From the desktop, perform the appropriate steps:

If duplicate devices appear in the **Disk Drives** section or **Disk Administrator** display, you have made errors in the switch fabric zoning configuration. Refer to refer to *Preparing the Fabric* on page 3-15 for the correct configuration procedure.

If you do not have a driver for Windows 2000 that is digitally signed, check the EMC section of the QLogic website for an updated driver. (Refer to *Where to Find the Driver* on page 2-14.)

What Next?

From here:

- If you need to install multipath and failover software, refer to *Installing Multipath and Failover Software*.
- If you need to start the installation again, refer to *Starting a Fresh Installation*.
- Otherwise, installation and setup are complete.
Assigning a Permanent Boot Drive Letter for Windows NT

If you have installed failover software into a Windows NT 4.0 server, it is good practice to hard-code the boot volume letter so that it does not change when rebooting after a LUN trespass. This can be done by using the following procedure (from MSKB Q153619):

1. Reassign all drive letters (including C: and the CD-ROM drive) to higher available letters. (You must do this or C: will be taken once it becomes available. After reassigning C:, you should receive a message requiring you to reboot for the new assignment to take effect.

2. Reboot the server.

 On system restart you may receive virtual memory errors; this is normal.

3. Rename all drives to their original letters.

4. Reboot and make an ERD of the new configuration.

Installing Multipath and Failover Software

Multipath and failover software on the host can transfer control of storage system LUNs on a hardware failure in a LUN path.

Important: If the Navisphere Host Agent is installed, you must remove it before installing multipath and failover software. (Refer to the documentation that came with your failover software.) Reinstall the host agent after installing the multipath and failover software.

Follow these steps to set up the multipath and failover software:

1. Install the software as described in the your EMC ControlCenter Navisphere Management software, ATF, or PowerPath documentation.

2. Create and enable a zone for each additional HBA and SP port that will be supported by the multipath and failover software.

Refer to *Known Issues* on page 3-35 for any additional information.
The EMC ControlCenter Navisphere Host Agent should be used to automatically register host connections with the array. PowerPath and ATF require different registration types and the Navisphere Host Agent is the preferred method over manual registrations.

You should install the Navisphere Host Agent software to ensure the HBA connections are all registered correctly. For instructions on how to perform this operation refer to the EMC ControlCenter Navisphere Host Agent software documentation for your array type.

After the host agent has started and registered the new HBA paths, you should refresh the host connections in the storage group to ensure all available paths are assigned. To do this:

1. Shut down the host.
2. Remove the host from the storage group.
3. Apply the change.
4. Add the host back into the storage group.
5. Restart the host.
6. Check the array connectivity status to ensure all connections you require are active.

To take advantage of the high-availability features of the HBA boot BIOS, you must configure additional Boot Port Name entries in the BIOS for any additional SP ports from which you want the BIOS to attempt to boot during system startup. Depending on the failover software installed, follow the appropriate steps:

1. Reboot the host

When the QLogic BIOS banner (shown below) appears, press CTRL–Q.

Different HBA models may display different banners. Be sure to select CTRL-Q for the HBA you wish to configure.

QLogic Corporation
QLA2300 PCI Fibre Channel ROM BIOS Version 1.17
Copyright © Qlogic Corporation 1993-1999 All rights reserved
Press <CTRL - Q> for Fast!UTIL
www.qlogic.com
2. After Fast!UTIL loads, the display depends on whether there are multiple QLogic HBAs installed:
 - If there is only one QLogic HBA, the Fast!UTIL Options menu appears.
 - If there are multiple QLogic HBAs, a list of addresses occupies by those HBAs appears. Use the arrow keys to select the desired HBA; then press ENTER. The Fast!UTIL Options menu appears.

3. Select Configuration Settings from the menu.

4. Select Selectable Boot Settings from the Configuration Settings menu.

 The first Boot Port Name entry should already be configured (as described under Configuring the HBA Boot BIOS on page 3-20).

 If you want another SP port to be accessible as a potential boot path to the current owner SP, select the next Boot Port Name entry, and in the Device window select the CLARiiON port WWN from which you want to boot.

5. If you have other HBAs for which you want to assign Boot Port Name entries, you can press ESC to go back to the main menu, save changes, and select another HBA as shown in step 2. If the other HBA you wish to configure has its own CTRL-Q BIOS prompt, reboot the server and configure that HBA’s Boot Port Name entries as you have done here.

6. Trespass the LUN and repeat steps 1 through 5 to configure any paths over which you want to be able to boot the LUN from the other SP.
To trespass the LUN, follow the instructions in the EMC ControlCenter Navisphere Management software documentation for your array type. The process depends on the failover software installed:

- With PowerPath configurations, this can usually be done from the EMC ControlCenter Navisphere Management software GUI by right-clicking the desired LUN and selecting trespass. Confirm in the LUN properties that the LUN has trespassed before you return to configure the remaining Boot Port Name entries.

- With ATF configurations:
 - With FC-series array core code 8.45.x, this can usually be done from the EMC ControlCenter Navisphere Management software GUI by right-clicking on the desired LUN and selecting trespass. Confirm in the LUN properties that the LUN has trespassed before you return to configure the remaining Boot Port Name entries.
 - With FC-series array core code 8.44.x and earlier, you will use the atf_trespass command to trespass the boot LUN. To do this, follow the steps under Trespassing the Boot LUN Using atf_trespass on page 3-30.

Each HBA can support multiple entries; you should configure Boot Port Name entries connecting to multiple ports on both SPs for maximum redundancy in booting after a boot LUN trespass or other link failures. Refer to Table 3-1 on page 3-34 to determine your high-availability requirements.

7. When all parameters are set correctly and you have added Boot Port Name entries for all the SP ports from which you would like to attempt to boot, press ESC to return to the Fast!UTIL Options menu; then select Save Changes to save the changes you made to the current adapter.

8. Press ESC to exit the Fast!UTIL Options menu.

9. Reboot the server.
Follow these steps to use the `atf_trespass` command to trespass the boot LUN:

1. Boot the host and log in to Windows.

2. Windows NT 4.0 will have the boot LUN configured for ID 0 as described under Preparing the Storage System on page 3-13.

For Windows 2000, follow these steps to determine the LUN ID of the boot LUN as seen by the host:

 a. From the Windows task bar, select **Start, Programs, Administrative Tools, Computer Management**.

 b. On the **Computer Management** window, click **Disk Management**.

 c. Locate the System disk in the list. This is typically Drive C:\ and will be noted with **(System)**.

 d. Select the **Disk X** description area, and from the **Action** menu, select **Properties**.

 A display appears with a line similar to the following:

 Device Type: SCSI (Port: 3, Target ID: 1, LUN:0)

 e. Find this **Device Type** line and note the LUN value. In this example, the LUN value is 0. This is the Host LUN ID you will need in the next step.

3. Open a command window and direct the multipath and failover software to trespass the LUN. If you are using ATF, open a command prompt and change to the multipath and failover software directory; then enter the `atf_trespass` command:

 - If the boot LUN is owned by SP A, enter commands in the following form to transfer it to SP B:

     ```
     cd Program Files\emc\atf
     atf_trespass atf_sp0 1:1:n
     ```

 where `n` is the Host LUN ID you discovered in step 2.

 - If the boot LUN is owned by SP B, enter commands in the following form to transfer it to SP A:

     ```
     cd Program Files\emc\atf
     atf_trespass atf_sp0 0:1:n
     ```

 These commands transfer the boot LUN to the other SP so you can configure it for failover in the HBA BIOS.
Starting a Fresh Installation

To start a fresh installation:

- Using EMC ControlCenter Navisphere Management software, remove the old boot Storage Group.
- Using Manager, unbind the old boot LUN.
- Remove any old boot zoning from the previous installation.
- Repeat the installation instructions.

4. Reboot the server.
Boot Time and LUN Availability

Boot time is the amount of time a storage system requires to boot. This time is a function of the number and types of LUNs in the storage system, and is typically less than five minutes.

If you power up a server and storage system at the same time (cold start), the server’s extended BIOS might scan the Fibre Channel bus before the storage system is ready to respond. If this occurs, the server will not be able to find the boot LUN or Windows operating system. To avoid this problem, either power up the storage system and fabric before the server, or if the server is so equipped, set it to delay the scan until the storage system is ready.
Replacing a Boot HBA

If a boot HBA fails, you can replace it with a new one as described in this section.

EMC Symmetrix

Follow the procedure under *Configuring a Symmetrix Boot Device*.

EMC CLARiiON

- Shut down and power off the server.
- Replace the HBA in the identical location and reconnect cabling.
- (Fabric configuration only) Repeat the procedure under *Preparing the Fabric* on page 3-15, and replace the old HBA’s WWPN with the new HBA’s WWPN.
- Repeat the procedure under *Verifying HBA Driver and Digital Signature Installation* on page 3-25.
How a Server Responds to Failure in the Boot LUN Path

Failure in the path to a SAN-based boot LUN can halt Windows in a fatal error condition. Depending on the failure, Windows may be able to transfer control to another path and continue.

Table 3-1 shows server reactions to failures in different components.

Table 3-1 Server Response to Failure in the Boot LUN Path (Single Fault)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Server State</th>
<th>HBA Failure</th>
<th>Switch Failure</th>
<th>Boot SP/Director Port Failure</th>
<th>Boot SP/Director Failure</th>
<th>Catastrophic Storage System Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or more HBAs, failover software</td>
<td>Windows running</td>
<td>Multipath</td>
<td>STOP error</td>
<td>Multipath</td>
<td>Trespass</td>
<td>STOP error</td>
</tr>
<tr>
<td></td>
<td>Windows booting</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
</tr>
<tr>
<td></td>
<td>Power up</td>
<td>Multipath</td>
<td>No Boot</td>
<td>Multipath</td>
<td>Manual</td>
<td>No Boot</td>
</tr>
<tr>
<td>1 HBA, failover software</td>
<td>Windows running</td>
<td>STOP error</td>
<td>STOP error</td>
<td>Trespass</td>
<td>Trespass</td>
<td>STOP error</td>
</tr>
<tr>
<td></td>
<td>Windows booting</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
</tr>
<tr>
<td></td>
<td>Power up</td>
<td>No boot</td>
<td>No boot</td>
<td>Manual</td>
<td>Manual</td>
<td>No boot</td>
</tr>
<tr>
<td>1 HBA, no failover software</td>
<td>Windows running</td>
<td>STOP error</td>
<td>STOP error</td>
<td>STOP error</td>
<td>STOP error</td>
<td>STOP error</td>
</tr>
<tr>
<td></td>
<td>Windows booting</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
<td>Halt</td>
</tr>
<tr>
<td></td>
<td>Power up</td>
<td>No boot</td>
<td>No boot</td>
<td>No boot</td>
<td>No boot</td>
<td>No boot</td>
</tr>
</tbody>
</table>

- a. Depending on the fabric configuration, if multiple switches are used, then this behavior would qualify under the Multipath category.
- b. CLARiiON only.

Explanations of Entries

- **STOP Error** (fatal blue screen) — Indicates host failure and chance of data corruption.
- **No boot** — Cannot boot Windows.
- **Halt** — Windows cannot recover before system has completed startup. (You must reboot and follow the power-up scenario.)
- **Manual** — Manual intervention is required to continue. (Typically, initiate a LUN trespass using CLI or Manager. With Manager, enable LUN Auto-Assignment in LUN properties.)
- **Multipath or Trespass** — This automatic operation allows no disruption of service. (The delay caused by this operation may affect Windows stability.)
Known Issues

Be aware of these issues:

- QLogic BIOS 1.26 and later for QLA23xx and BIOS 1.79 and later for QLA22xx HBAs allow for multiple **Boot Port Name** entries to be configured for high-availability booting after path failures. Previous BIOS versions do not support this functionality, will boot only from a single storage array port, and cannot provide boot capability with path failures.

- NTOSKNI BSOD (blue screen) during a link down event can cause filesystem corruption to mounted filesystems.

- HBA boot BIOS does not support high availability while the OS is booting. It can handle path failures at boot initialization time, and after the OS has loaded. Path failures while the OS is loading will require the host to reboot before successfully completing the boot process. Refer to *How a Server Responds to Failure in the Boot LUN Path* on page 3-34 for additional information.

- Degraded response time as the I/O load approaches storage system capacity can make the OS appear hung or result in a NTOSKNI BSOD.

- Boot files, Windows system files, and swap space should all be on the boot LUN. With certain server models, you can use an internal disk for the page file for stability; however, this might not increase fault tolerance and might reduce system recovery options.

- Swap space must be available on %SYSTEMROOT% or core dump will fail.
This appendix contains additional information about third-party software used with Windows hosts.

- QLogic SANSurfer SANBlade Manager v2.0.21...........................A-2
- Veritas Volume Manager 3.x for Windows 2000.........................A-3
QLogic SANSurfer SANBlade Manager v2.0.21

Stratus ftServers are not supported using the qLogic SANSurfer SANBlade Manager Software or Agents.

EMC has approved the use of a specialized version of the QLogic SANSurfer SANBlade Manager for use with attached EMC Symmetrix and CLARiiON storage arrays. Only version 2.0.21 should be used; this version is posted in the EMC section on the QLogic website.

This Windows utility provides information on the installed QLogic HBAs, driver versions, mapped targets, statistics, and configuration settings. It also has a feature to update the HBA firmware/BIOS and NVRAM. (You should obtain the latest EMC-approved firmware/BIOS and NVRAM files from the QLogic website. Refer to Downloading QLogic Drivers and Firmware on page 2-2 for instructions.)

For information on the use and features of the QLogic SANSurfer SANBlade Manager utility, refer to the documentation posted with this utility.

The SANSurfer software is not multipath-aware, and as such may misreport HBA targets that are configured in multipath. This does not affect the use of the tool; however, it will accurately report targets only on ports that own an active LUN0.
Veritas Volume Manager 3.x for Windows 2000

Refer to the latest EMC Support Matrix to determine which Veritas Volume Manager 3.x configurations are supported, and what service packs may be required.

CAUTION
Configuring large numbers of device paths with Veritas Volume Manager can cause a Windows system to boot very slowly, and in some cases overrun the NTLDR boot-time registry size and halt. Systems that are configured with more than 512 device paths (total paths to all LUNs) should check with EMC Customer Service before installing Veritas Volume Manager 3.x.

If using PowerPath with Veritas Volume Manager 3.0 with Service Pack 1, you must also make the following registry modifications before PowerPath devices will be available to the Veritas Enterprise Manager:

Use regedit32.exe to set the registry as follows:

```
HKEY_LOCAL_MACHINE\SOFTWARE\VERITAS\VxSvc\CurrentVersion\VolumeManager
  value name = ShowGateKeeperDevices
  data type = REG_DWORD
  value = 0x1

HKEY_LOCAL_MACHINE\SOFTWARE\VERITAS\VxSvc\CurrentVersion\VolumeManager
  value name = ShowEmcHiddenDevices
  data type = REG_DWORD
  value = 0x1
```

After completing these changes, reboot the host system.
This appendix contains information on troubleshooting problems.

- Problems and Solutions... B-2
Problems and Solutions

Problem

Error Message ID: 51 in event viewer when attempting to install multiple host access (for clustering) to the same EMC CLARiiON array storage group. The text of the message is:

An Error was detected on device \Device\Harddisk<x>\DR<x> during a paging operation

Solution

Until host cluster software is installed, only a single host should access a storage group at a time. Refer to the EMC Support Matrix for supported host configurations.

Problem

EMC Primus case emc29097 — If using HBAs connected to both CLARiiON SPs, without PowerPath installed, duplicate LUNs will be visible in the Device Manager and Disk Manager. Only one instance of the LUN will be accessible, and all other matching mappings will be listed as Unknown, Unreadable and Unallocated.

Solution

This is normal behavior when multiple paths are available, PowerPath is not installed, and the initiator type is registered in PowerPath mode (array default depending on core code revision).

Problem

EMC Primus case emc69307 — When using QLogic HBAs in a Brocade fabric environment, after upgrading Brocade 3900-series switch firmware to 3.0.2m, the HBAs report repeated link errors, and intermittently lose fabric connectivity.

PowerPath may report paths lost and then found in quick succession, and repeated Windows 2000 event log error entries for Link Down/Link Up events similar to the following:

Event ID: 11
Source: ql2300
Description: The driver detected a controller error on \Device\Scsi\ql2300x.
Data (words): offset 34 = 80120000 [ErrorCode: Link down error]

Event ID: 11
Source: ql2300
Description: The driver detected a controller error on \Device\Scsi\ql2300x.
Data (words): offset 34 = 80110000 [ErrorCode: Link up]
Problem

EMC Primus case emc69308 — Direct-connect to EMC CLARiiON CX200 reports incorrect queue full error messages. Even under light I/O, a host may log a message noting that disk has reached a queue-full state similar to the following in the Windows event viewer:

Event ID: 11
Source: ql2300
Description: The driver detected a controller error on \Device\Scsi\ql2300x.
Data (words): offset 34 = F003001C [ErrorCode: Target device queue full].

Solution

Upgrade to the latest HBA driver. This was corrected for Windows 2000 in 8.2.2.25 and later drivers. The 8.2.2.25 driver is available from EMC Support. Windows 2003 driver 8.2.2.20 and later already contain this correction.
EMC Fibre Channel with QLogic HBAs in Windows Hosts
B
- BIOS, updating 2-10
- boot device, configuring
 - CLARiiON 3-10
 - overview 3-2
 - Symmetrix 3-5
- boot time and LUN availability 3-32

C
- configurations, valid 3-12

D
- data rate, HBA, setting manually 2-12
- driver, HBA
 - downloading 2-2
 - installing
 - in Windows 2000 host 2-15
 - in Windows 2003 host 2-15
 - in Windows NT host 2-15
 - overview 2-14
 - revision history 2-14
 - updating
 - in Windows 2000 host 2-17
 - in Windows 2003 host 2-17

F
- failure in boot LUN path, server response to 3-34
- Fibre-Down servers 2-10
- firmware, HBA
 - downloading 2-2
 - updating 2-10

H
- hard zoning (switch) 3-17
- HBA, boot, replacing 3-33
- HBA, installing 2-3

I
- issues with boot support 3-35

L
- LUN availability and boot time 3-32

N
- NVRAM settings 2-8

P
- persistent binding 1-2

S
- SANSurfer SANBlade Manager A-2
- server response to failure in boot LUN path 3-34
- soft zoning (switch) 3-16

T
- topology requirements 3-12
- topology, HBA, setting 2-13
- troubleshooting B-1
Index

V
Veritas Volume Manager 3.0 A-3

W
Windows OS, installing onto a CLARiiON boot device 3-22

Z
zoning, hard 3-17
zoning, soft 3-16